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The severity of West Nile virus (WNV) infection in immunocompetent animals is highly strain dependent, ranging from aviru-
lent to highly neuropathogenic. Here, we investigate the nature of this strain-specific restriction by analyzing the replication of
avirulent (WNV-MAD78) and highly virulent (WNV-NY) strains in neurons, astrocytes, and microvascular endothelial cells,
which comprise the neurovascular unit within the central nervous system (CNS). We demonstrate that WNV-MAD78 replicated
in and traversed brain microvascular endothelial cells as efficiently as WNV-NY. Likewise, similar levels of replication were de-
tected in neurons. Thus, WNV-MAD78’s nonneuropathogenic phenotype is not due to an intrinsic inability to replicate in key
target cells within the CNS. In contrast, replication of WNV-MAD78 was delayed and reduced compared to that of WNV-NY in
astrocytes. The reduced susceptibility of astrocytes to WNV-MAD78 was due to a delay in viral genome replication and an inter-
feron-independent reduction in cell-to-cell spread. Together, our data suggest that astrocytes regulate WNV spread within the
CNS and therefore are an attractive target for ameliorating WNV-induced neuropathology.

The Flaviviridae include several globally important emerging
arthropod-borne viruses, such as yellow fever virus, dengue

virus, Japanese encephalitis virus, and West Nile virus (WNV).
WNV has re-emerged as a pathogen that causes severe neurolog-
ical disease. Prior to the 1990s, most WNV infections were asymp-
tomatic or associated with a mild febrile illness known as West
Nile fever. Since its introduction into the United States in 1999,
annual outbreaks of WNV have resulted in �16,000 reported
cases with neurological complications, including meningitis, en-
cephalitis, and acute flaccid paralysis. These cases have resulted in
greater than 1,500 deaths, making WNV the leading cause of mos-
quito-borne neuroinvasive disease in the United States (http:
//www.cdc.gov/ncidod/dvbid/westnile/index.htm). In addition,
outbreaks have occurred in other parts of the world, including
eastern and western Europe (1, 2). Nevertheless, the factors re-
sponsible for the increase in pathogenicity of WNV remain poorly
understood.

Many neuroinvasive viruses, including WNV, preferentially
enter the central nervous system (CNS) via the hematogenous
route by crossing the blood-brain barrier (BBB). The BBB is com-
prised of specialized endothelial cells, which line the cerebral mi-
crovasculature, and the foot processes of astrocytes, which en-
velop �99% of the endothelium. Under normal physiological
conditions, the BBB tightly regulates transport of molecules into
and out of the CNS. The restrictive nature of the BBB is a conse-
quence of the formation of complex cell-to-cell tight junctions
and lower basal levels of pinocytosis and endocytosis (3, 4). Al-
though astrocytes were once thought to serve a structural role in
the BBB, it is now clear that they play an important role in main-
taining its functional integrity. In vitro, cocultures of brain endo-
thelial cells and astrocytes establish a tighter barrier than endothe-
lial cells alone, and secretion and activation of matrix
metalloproteases (MMPs) by astrocytes result in disruption of the
BBB during disease (5, 6). Astrocytes also modulate neuronal
health and activity through the uptake of excess neurotransmitters
and secretion of nutrients (7–10). Thus, astrocytes serve as a struc-

tural and functional bridge between endothelial cells and neurons.
Together, these three cell types form the neurovascular unit
(NVU), which functions to regulate blood flow, the integrity of
the BBB, and neuronal activity in response to environmental
changes (11). Understanding how viruses replicate within the
NVU may facilitate novel strategies for treating viral infection of
the CNS.

The neuroinvasive potential of WNV is strain dependent.
While most, if not all, strains of WNV are neurovirulent when
mice are inoculated intracranially, only a subset of strains are neu-
roinvasive when inoculated via a peripheral route (12). The mech-
anistic basis for the increased neuroinvasiveness of some strains of
WNV remains poorly understood. However, the observation that
exogenous disruption of the BBB enables a nonneuropathogenic
strain of WNV to enter the CNS (13) suggests that the capacity to
traverse the BBB is a determining factor for neuropathogenicity.
Here, we investigated the nature of the restriction at the BBB by
comparing the ability of an avirulent lineage 2 African isolate,
WNV-MAD78 (12), to a highly virulent lineage 1 North American
strain isolated in 2000, West Nile virus New York (WNV-NY),
(12, 14, 15) to replicate in various cell types comprising the NVU.
While both strains replicated efficiently in brain microvascular
endothelial cells and neurons, WNV-MAD78 replication was re-
stricted within astrocytes compared to that of WNV-NY. WNV-
MAD78 exhibited both a delay in viral genome synthesis and re-
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duced cell-to-cell spread in astrocytes compared to WNV-NY.
Moreover, the restriction of WNV-MAD78 replication and spread
in astrocytes was independent of type I interferon (IFN). To-
gether, our findings suggest that astrocytes play an important role
in controlling WNV dissemination within the CNS.

MATERIALS AND METHODS
Cells and viruses. Previously characterized human brain microvascular
endothelial cells (HBMECs) were obtained from K. S. Kim (Baltimore,
MD) (16). HBMECs were isolated from individuals with seizure disorders
and transformed by stably transfecting cells with the simian virus 40
(SV40) large T antigen. HBMECs were grown in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS), antibiotic/antimy-
cotic, nonessential amino acids, minimal essential medium (MEM) vita-
mins, 5 U/ml heparin, NuSerum (10%), 2 mM L-glutamine, 1 mM so-
dium pyruvate, and 150 �g/ml endothelial growth supplement. All
HBMEC experiments were performed with cells passaged no more than
12 times. Donor-matched primary human brain cortical astrocytes
(HBCAs; ABRI371) and human brain microvascular endothelial cells
(HBMVECs; ABRI401) derived from normal human tissue were pur-
chased from CellSystems (Kirkland, WA). Both cell types were main-
tained according to the manufacturer’s instructions. All experiments with
HBMVECs and HBCAs were performed on cells passaged no more than
14 times. Primary cortical neurons were prepared from day 15 C57BL/6
mouse embryos as previously described (17, 18). Cortical neuron experi-
ments were performed using neurons that were cultured for 3 to 4 days in
neurobasal medium containing B27 and L-glutamine (Invitrogen).
Neuro2A and Vero cells were maintained in Dulbecco’s modified essential
medium (DMEM) supplemented with 10% FBS, 2 mM L-glutamine, 1
mM sodium pyruvate, antibiotic/antimycotic solution, and nonessential
amino acids (complete DMEM). Neuro2A cells were differentiated 3 days
prior to infection by reducing the FBS concentration to 0.5% and were
maintained in differentiation media throughout the course of the exper-
iment.

Working stocks of WNV-NY strain 3356 were generated from an in-
fectious clone, pFL-WNV (19). Briefly, infectious particles were recovered
as previously described (19), passaged once in 293 cells at a low multiplic-
ity of infection (MOI), and subsequently passaged in Vero cells. WNV-
MAD78 was obtained from the World Reference Center of Emerging
Viruses and Arboviruses (Galveston, TX). Lyophilized virus was resus-
pended in complete DMEM supplemented with 20% FBS, amplified once
in Vero cells, and plaque purified. Viral stocks were amplified once in 293
cells at a low MOI, and working stocks were generated by passaging once
in Vero cells. All viral stocks were aliquoted and stored at �80°C.

Growth curves. Cell cultures were infected with WNV-NY or WNV-
MAD78 at the indicated MOI for 1 h at 37°C. Unless otherwise stated, the
amount of virus added to cultures to achieve the indicated MOI was cal-
culated using the titer of the viral stock on the respective cell line. The
inoculum was removed and complete medium was added. Culture super-
natants were recovered at the indicated times and clarified by low-speed
centrifugation for 5 min. Supernatants were transferred to new tubes and
stored at �80°C. Viral titers were determined by plaque assay on Vero
cells.

Virus titration by plaque assay. Monolayers of Vero cells in 6-well
plates were washed once with phosphate-buffered saline (PBS) prior to
the addition of serial dilutions of viral samples. The cells were incubated in
a 5% CO2 incubator for 1 h at 37°C with rocking, the inocula were re-
moved, and complete DMEM solution with 0.9% low-melting-point aga-
rose (Fisher) was overlaid. Vesicular stomatitis virus (VSV) plaques were
counted 24 h postinfection. For WNV titration, cell monolayers were
incubated for 48 h, and a second overlay of agarose-containing complete
DMEM supplemented with 0.003% neutral red (Sigma) was added. The
plates were incubated for an additional 48 (WNV-NY) to 96 h (WNV-
MAD78) prior to counting plaques. All titers were performed in duplicate.

Viral translocation assay. HBMECs or HBMVECs (4 � 104 cells)
were plated on the luminal side of a fibronectin-coated cell culture insert
with a pore size of 3 �m (BD Biosciences) and incubated for 5 days at 37°C
in a 5% CO2 incubator. The widely accepted methods of transendothelial
electrical resistance (TEER) and translocation of fluorescein isothiocya-
nate (FITC)-labeled dextran were used to assess the integrity of the endo-
thelial monolayers (16, 20). As previously reported, monolayers reaching
TEER values between 250 and 300 �/cm2 were largely impermeable to
FITC-labeled dextran (20). Therefore, monolayers were considered con-
fluent once a minimum TEER value of 250 �/cm2 was achieved. Conflu-
ent cultures were infected at an MOI of 0.1 by adding virus to the upper,
luminal chamber. Inoculum was removed after incubating for 1 h at 37°C,
and 500 �l of appropriate complete medium was added to both chambers.
Medium was collected from both chambers at the indicated times, and the
level of infectious virus was determined by plaque assay.

In vitro BBB model. HBMECs (4 � 104 cells) and HBCAs (7.5 � 103

cells) were plated on transwell inserts and bottom chambers, respectively.
The TEER of the HBMEC monolayer was measured 5 days after plating
using a Millicell ERS. Cultures were considered confluent when a resis-
tance of 250 to 300 �/cm2 was recorded. The HBMEC monolayer was
infected at an MOI of 0.1 by adding virus to the luminal chamber. Inoc-
ulum was removed after incubating for 1 h at 37°C, and 500 �l of appro-
priate complete medium was added to both chambers. Medium was col-
lected from both chambers at the indicated times, and the level of
infectious virus was determined by plaque assay.

Indirect immunofluorescence analysis (IFA). At the indicated times
postinfection, the HBCA monolayer was washed with PBS and fixed with
3% paraformaldehyde. Cell monolayers were permeabilized with a solu-
tion of PBS– 0.2% Triton X-100, blocked with PBS containing 10% nor-
mal goat serum, and incubated with WNV hyperimmune ascitic fluid
(1:1,000; World Reference Center of Emerging Viruses and Arboviruses)
followed by goat anti-mouse IgG 549-nm Dylight-conjugated antibody
(1:800; Jackson ImmunoLaboratories) and Hoescht stain (0.1 �g/ml).
Cells were visualized with an Olympus IX51 microscope equipped with a
digital camera.

Flow cytometry. HBCA monolayers infected with WNV-NY or
WNV-MAD78 (MOI of 0.01) were removed from plates by trypsiniza-
tion, washed 2 times with PBS, and fixed in 3% paraformaldehyde. Cells
were permeabilized with PBS– 0.2% Triton X-100, blocked in PBS con-
taining 0.5% heat-inactivated FBS, and probed with WNV hyperimmune
ascitic fluid (1:1,000; World Reference Center of Emerging Viruses and
Arboviruses) followed by goat anti-mouse IgG 633-nm Dylight-conju-
gated antibody. For flow cytometry analysis, 100,000 single cell events
were collected using a FACS Canto (BD Biosciences).

Type I IFN bioassay. A549s (7 � 104 cells) in 24-well plates were
treated with 2-fold serial dilutions of human leukocyte IFN-� (BEI Bio-
sciences) or cell-free, UV-inactivated supernatants recovered from WNV-
infected HBCAs. Pretreated cells were infected with VSV (MOI of 1), and
supernatants were collected at 24 h postinfection. Viral titers were deter-
mined by plaque assay on Vero cells as described above. IFN concentra-
tions were determined based on a standard curve generated from the titers
recovered from samples treated with IFN-�.

Neutralization of type I IFN. The antibody concentration necessary
to neutralize the IFN present in supernatants recovered from WNV-in-
fected HBCAs was determined by pretreating A549 cells for 24 h with 160
IU/ml of IFN-� or -� in the presence of 10-fold dilutions of the antibodies
to IFN-� (BEI) or IFN-� (BEI). Control wells consisted of cells treated
with IFN only, no IFN, or isotype-matched antisera to IFN-� or IFN-�.
Pretreated cells were infected with VSV (MOI of 1) and supernatants
collected at 24 h postinfection. Viral titers were determined by plaque
assay on Vero cells. For neutralization experiments, HBCAs were inocu-
lated with WNV (MOI of 0.01) for 1 h at 37°C. The inoculum was replaced
with complete DMEM containing 2 times the amount of antibody neces-
sary to neutralize 160 IU/ml IFN-� and/or IFN-� or the appropriate con-
trol sera.

WNV Strain Variation in Replication within Astrocytes

March 2013 Volume 87 Number 5 jvi.asm.org 2815

http://jvi.asm.org


qRT-PCR. Total RNA was extracted from HBCAs infected with
WNV-MAD78 or WNV-NY (MOI of 0.01) using TRIzol (Invitrogen Life
Technologies, Inc.) and treated with TurboDNase (Applied Biosystems).
Total viral RNA levels were determined by quantitative real-time PCR
(qRT-PCR) analysis on a Roche LC480 using Veriquest One-Step SYBR
green MasterMix (Affymetrix Biosystems) with 50 ng of RNA. The fol-
lowing primers were used: WNV-NY (forward), 5=-GGA CCT TGT AAA
GTT CCT ATC TCG-3=; WNV-NY (reverse), 5=-AGG GTT GAC AGT
GAC CAA TC-3=; WNV-MAD78 (forward), 5=-CTG TAA GGT GCC
CAT TTC C-3=; WNV-MAD78 (reverse), 5=-CCT CTT CCC ACC ACA
ATG TAG-3=; human GAPDH (forward), 5=-CCA CTC CTC CAC CTT
TGA C-3=; human GAPDH (reverse), 5=-ACC CTG TTG CTG TAG CC
A-3=. Two-step quantitative PCR was used to determine strand-specific
viral RNA levels. cDNA was generated from 500 ng of RNA using Moloney
murine leukemia reverse transcriptase (NEB Biosciences) and gene-spe-
cific primers. The resulting cDNA was used as the template for qPCR with
SYBR green 2� Veriquest MasterMix (Affymetrix). Primers used for two-
step qPCR were the same as the primers described above.

Statistical analysis. Graphpad Prism 5 was used to generate all statis-
tical analyses. Standard errors and significance were determined using
either one-way analysis of variance (ANOVA) with Bonferroni posttest
correction or a two-tailed paired or unpaired Student t test.

RESULTS
WNV-NY and WNV-MAD78 replicate to similar levels in neu-
ronal cells. Because neurons constitute a primary target of WNV
infection in vivo (21), we compared WNV-MAD78 to WNV-NY
replication in primary cortical neurons derived from wild-type
C57BL/6 mice and the mouse neuroblastoma cell line Neuro2A
(Fig. 1A and B) at a multiplicity of infection (MOI) of 0.01 and 0.1,
respectively. WNV-NY and WNV-MAD78 reached similar peak
titers in both cell types, although the kinetics of WNV-MAD78
replication were slightly delayed at 24 h in cortical neurons (9.2-
fold; P 	 0.03). Despite the slight growth delay, neuronal cells
were highly permissive for WNV-MAD78 replication, suggesting
that the nonneuropathogenic phenotype documented in mice
(12, 14) is not due to a reduced capacity to infect and replicate in
neurons.

WNV-MAD78 efficiently infects and traverses human brain
endothelial cells. Although many viruses achieve high levels of
viremia, under normal conditions the BBB is highly effective at
protecting the brain from circulating virus in the bloodstream.

However, neuroinvasive viruses have evolved a variety of mecha-
nisms to breach the BBB and gain access to the CNS (4). Because
replication in brain endothelial cells is sufficient for transport of
neuroinvasive strains of WNV across brain microvascular endo-
thelial cells (20), we hypothesized that the decreased neuropatho-
genicity of WNV-MAD78 was due in part to a deficiency in repli-
cation in brain endothelial cells. Therefore, we monitored
replication of WNV-NY and WNV-MAD78 in an established hu-
man brain microvascular endothelial cell line (HBMEC) that has
been widely used as a model to study bacterial and parasitic neu-
roinvasion (16, 22–25) and primary brain microvascular endothe-
lial cells (HBMVECs) derived from normal brain cortex tissue (20,
26). WNV-NY and WNV-MAD78 replicated at similar rates and
to equivalent levels in both cell types, reaching peak titers between
32 and 48 h postinfection (Fig. 2A and B) without induction of
cytopathic effect (CPE) (data not shown). However, we did ob-
serve a slight but statistically insignificant decrease in WNV-
MAD78 titers very late in infection. These data suggest that repli-
cation in endothelial cells is not responsible for the decreased
neuropathogenicity of WNV-MAD78.

It was recently reported that nonreplicating virus-like particles
(VLPs) generated from a lower virulence lineage 1 strain of WNV
exhibited reduced transcellular migration across human umbilical
vein endothelial cell monolayers compared to those generated
from a highly virulent strain (27). Thus, nonneuropathogenic
strains, such as WNV-MAD78, may have a reduced capacity to
traverse the BBB despite replicating efficiently in brain microvas-
cular endothelial cells. To test this, we infected HBMEC or HBM-
VEC monolayers grown on transwell supports and measured vi-
rus yields in both luminal (upper) and abluminal (lower)
chambers. Equivalent levels of infectious particles were present in
the luminal and abluminal chambers of WNV-NY- and WNV-
MAD78-infected HBMECs (data not shown) and HBMVECs
(Fig. 2C) at 24 and 48 h postinfection, demonstrating that both
strains are capable of traversing the BBB at similar rates and levels.
Therefore, the nonneuropathogenic phenotype of WNV-MAD78
does not correspond to a reduced capacity to replicate in or tra-
verse brain microvascular endothelial cells.

WNV-MAD78 replication is restricted in cocultures of
HBMECs and HBCAs. We next tested whether astrocytes, which

FIG 1 WNV-NY and WNV-MAD78 replication in neuronal cells. Cortical neurons isolated from C57BL/6 mice (MOI of 0.01) (A) and differentiated Neuro2A
cells (MOI of 0.1) (B) were infected with WNV-NY or WNV-MAD78. The MOI was calculated using the titer of the viral stocks on Vero cells. Culture
supernatants were recovered at the indicated times, and titers were determined by plaque assay on Vero cells. Values represent the average numbers of PFU per
ml (
 standard errors) of supernatant and are from at least two separate experiments. A Student’s unpaired t test was performed to determine statistical
significance. Asterisks indicate differences that are statistically significant (*, P � 0.05).
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constitute the periparenchymal layer of the BBB, differentially
limit WNV-MAD78 replication using an in vitro BBB model com-
prised of HBMECs cultured on transwell supports with primary
human brain astrocytes derived from the cerebral cortex (HBCAs)
in the bottom chamber. As previously observed, both strains of
WNV were detected in medium recovered from the abluminal
chamber 24 h after infection of the HBMEC monolayer (Fig. 3A).

However, viral protein expression was not detected in the HBCAs
until approximately 48 h after infection (Fig. 3B, panels iii and iv).
At this time, equivalent numbers of infected cells were present in
WNV-NY- and WNV-MAD78-infected cultures (144 
 61 and
109 
 63 WNV� cells, respectively), suggesting that WNV-NY
and WNV-MAD78 had similar capacities to establish an initial
infection within the astrocyte monolayer. However, by 72 h
postinfection, substantially more WNV-positive HBCAs were de-
tected in WNV-NY-infected cultures than in WNV-MAD78-in-
fected cultures (Fig. 3B, compare panel v to vi). Thus, WNV-
MAD78 spread within the in vitro BBB model was constrained
compared to that of WNV-NY.

WNV-MAD78 replication within astrocytes is restricted at
multiple steps in the virus life cycle. To further investigate the
contribution of astrocytes in restricting WNV-MAD78 replica-
tion within the in vitro BBB, we examined WNV replication in
HBCAs alone. In contrast to the donor-matched HBMVECs uti-
lized in Fig. 2B and C, WNV-MAD78 infectious particle produc-
tion in HBCAs was lower than that observed for WNV-NY
throughout the course of infection (Fig. 4A). At the point of peak
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FIG 2 WNV-NY and WNV-MAD78 replication in human brain microvascu-
lar endothelial cells. Immortalized HBMECs (A) or primary HBMVECs (B)
were infected with WNV-NY or WNV-MAD78 (MOI of 0.1). Culture super-
natants were recovered at the indicated times and titers determined by plaque
assay on Vero cells. Values represent the average numbers of PFU per ml
(
 standard errors) of supernatant from at least two separate experiments. (C)
Traversal of HBMVEC by WNV-NY and WNV-MAD78. Confluent monolay-
ers of HBMVECs were cultured on transwell inserts and infected with
WNV-NY or WNV-MAD78 (MOI of 0.1). Culture supernatants were col-
lected from the luminal and abluminal chambers at the indicated times, and
titers were determined by plaque assay on Vero cells. Values represent the
average numbers of PFU per ml (
 standard errors) of supernatant from two
separate experiments.

FIG 3 WNV replication in an in vitro model of the BBB. (A and B) HBMECs
cultured on transwell inserts with HBCAs plated in the abluminal chamber
were infected with WNV-NY or WNV-MAD78 (MOI of 0.1). (A) Culture
supernatants were recovered from the abluminal chamber of the transwell at
24 h postinoculation, and viral titers were determined by plaque assays on
Vero cells. Values represent the average numbers of PFU per ml (
 standard
errors) of supernatant from at least three separate experiments. (B) Viral rep-
lication in the HBCA layer of an in vitro BBB model. HBCAs were fixed with
3% PFA at the indicated times and probed with WNV hyperimmune ascitic
fluid and goat anti-mouse IgG 549-nm Dylight-conjugated secondary anti-
body. Images are representative of at least three independent experiments.
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viral production, WNV-MAD78 titers were reduced approxi-
mately 45-fold (P � 0.005) compared to those of WNV-NY.
Moreover, the latent period prior to the detection of extracellular
infectious particles in WNV-MAD78-infected cultures was pro-
longed compared to that of WNV-NY-infected cultures, suggest-
ing that WNV-MAD78 replication is delayed in HBCAs. A similar
delay and reduction in WNV-MAD78 infectious particle produc-
tion was observed when cultures were infected at an MOI of 2,
which established a nearly synchronous infection of the mono-
layer (data not shown).

Accumulation of intracellular viral RNA also was delayed in
WNV-MAD78-infected HBCAs compared to that in WNV-NY-
infected HBCAs (Fig. 4B). Thus, the prolonged lag period prior to
infectious particle production in the supernatants of WNV-
MAD78-infected HBCAs may be due to a delay in viral RNA rep-
lication rather than assembly of virus particles. To better define
the nature of the delay in WNV-MAD78 replication, we assessed
the rate of accumulation of both positive- and negative-strand
RNA at early times postinfection. Synthesis of both positive- and
negative-strand WNV-MAD78 RNA was delayed compared to
that of WNV-NY (Fig. 4C and D), suggesting that WNV-MAD78
replication in astrocytes is restricted at an early step in the virus life
cycle.

The delay in synthesis of WNV-MAD78 viral RNA corre-
sponded with a decrease in the number of extracellular infectious
particles produced per infected cell compared to WNV-NY-in-
fected cells at 24 h postinfection (Fig. 5A). However, by 48 h
postinfection, WNV-NY- and WNV-MAD78-infected HBCAs

produced similar levels of infectious particles per cell. In spite of
this, the level of total infectious particles detected in WNV-
MAD78-infected cultures remained substantially reduced com-
pared to that of WNV-NY throughout the course of infection (Fig.
4A), suggesting that factors independent of viral RNA synthesis
also are involved in restricting WNV-MAD78 replication within
astrocytes. Indeed, visualization of WNV-infected astrocytes in
the BBB coculture system indicated that WNV-MAD78 is also
limited in cell-to-cell spread compared to WNV-NY (Fig. 3B,
compare panel v to vi). To confirm these results, we quantitated
the number of infected HBCAs over the course of infection using
flow cytometry (Fig. 5B). Low levels of WNV-positive cells were
detected at 12 h postinfection in WNV-NY-infected cultures.
However, antigen-positive cells were not detected in WNV-
MAD78-infected cultures until 16 h postinfection, which is con-
sistent with the delay in viral replication. Importantly, the baseline
number of WNV-NY-infected HBCAs at 12 h postinfection was
comparable to the number of WNV-MAD78-infected HBCAs de-
tected at 16 h postinfection, confirming that both strains are ca-
pable of establishing an initial infection within the astrocyte
monolayer. While the number of WNV-NY-positive cells contin-
ued to increase throughout the course of infection, the number of
WNV-MAD78-positive cells remained unchanged. By 48 h
postinfection, there was a 15-fold (P � 0.01) increase in antigen-
positive cells detected in WNV-NY-infected HBCAs compared to
WNV-MAD78-infected HBCAs. Overall, our data suggest that
WNV-MAD78 is both delayed in initiation of viral synthesis in

FIG 4 WNV replication in HBCAs. HBCAs were infected with WNV-NY or WNV-MAD78 (MOI of 0.01). (A) WNV-NY and WNV-MAD78 infectious particle
production in HBCAs. Culture supernatants were removed at the indicated times, and titers were determined by plaque assay on Vero cells. Values represent the
average numbers of PFU per ml (
 standard errors) of supernatant from at least three separate experiments. Asterisks indicate differences that are statistically
significant (***, P � 0.005). (B to D) RNA synthesis of WNV-NY and WNV-MAD78 in HBCAs. Total RNA was recovered from HBCAs infected as described for
panel A. Total (B) and strand-specific (C, positive; D, negative) viral RNA levels were determined by qRT-PCR. Values represent the averages (
 standard errors)
from at least three independent experiments. A Student’s unpaired t test was performed to determine significance. Asterisks indicate differences that are
statistically significant (*, P � 0.05; **, P � 0.01; ***, P � 0.005).
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HBCAs and impaired in its ability to spread to neighboring cells
compared to WNV-NY.

The reduced susceptibility of HBCAs to WNV-MAD78 is in-
dependent of type I IFN. The restriction to WNV-MAD78 spread
within astrocytes was suggestive of the paracrine protection of
type I IFNs (28–30). Therefore, we examined supernatants recov-
ered from WNV-infected HBCAs for the presence of type I IFNs
using a bioassay. Measureable levels of IFN were first detected at
30 and 40 h postinfection in supernatants recovered from WNV-
NY- and WNV-MAD78-infected HBCAs, respectively (Fig. 6A).
Furthermore, infection of HBCAs with WNV-NY induced signif-
icantly higher levels of IFN than infection with WNV-MAD78 at
all time points examined. Therefore, the kinetics and amplitude of
induction of secreted IFN did not correlate with WNV-MAD78’s
diminished capacity to spread from cell to cell early in infection.
However, WNV-MAD78 is more sensitive to IFN treatment than
pathogenic strains of WNV in other cell types (14 and unpub-
lished data). Thus, local levels of type I IFNs surrounding the
WNV-MAD78-infected cells may be sufficient to inhibit viral
spread. To assess this possibility, we examined viral spread and

infectious particle production in HBCAs infected with WNV-NY
or WNV-MAD78 in the presence or absence of neutralizing anti-
bodies to IFN-� and -� (Fig. 6B to D). We consistently observed a
significant increase in the number of WNV-NY-infected cells in
the presence of neutralizing antibodies to IFN-�/� (Fig. 6B). Ad-
ditionally, neutralizing antibodies to IFN-�/� or IFN-� enhanced
infectious particle production in WNV-NY-infected HBCAs (Fig.
6C and D). In contrast, neutralizing antibodies to IFN-� and/or
-� did not enhance viral spread or infectious particle production
in WNV-MAD78-infected cells (Fig. 6B to D). These data suggest
that IFN-� plays a role in restricting WNV-NY, but not WNV-
MAD78, replication and spread in HBCAs.

DISCUSSION

The naturally occurring diversity in virulence among WNV
strains provides an excellent model system to define the viral and
host factors involved in pathogenesis. To better understand the
mechanistic basis for the differential neuropathogenicity between
WNV strains, we compared the replication of pathogenic and
nonpathogenic strains of WNV within the various cell types of the
NVU. Consistent with reports that WNV-MAD78 is neuroviru-
lent when mice are infected via intracranial inoculation (15), we
observed that WNV-NY and WNV-MAD78 replicate to equiva-
lent levels in neuronal cells. This suggests that WNV-MAD78’s
nonneuropathogenic phenotype is due to an inability to access
highly susceptible neurons under peripheral infection conditions.
Indeed, the nonneuropathogenic phenotype of some strains of
WNV has been attributed to an inability to invade the CNS (12, 13,
27). Increasing evidence suggests that WNV entry into the CNS is
a multistep process that can occur through one of several routes
(17, 20, 31–35). WNV entry into the CNS has been shown to
precede disruption of the BBB and leukocyte infiltration (32, 33,
36, 37), suggesting that WNV utilizes a direct mechanism to ini-
tially invade the CNS, such as basolateral secretion of virus parti-
cles from infected brain endothelial cells or transcytosis. Thus, the
brain endothelium likely constitutes a primary barrier to WNV
neuroinvasion. Using an established endothelial cell line that ex-
hibits the physiological characteristics of the brain endothelium
(16, 22–25, 38) and primary brain endothelial cells, we have dem-
onstrated that WNV-MAD78 can replicate in and traverse the
brain endothelium as efficiently as WNV-NY. Our findings are
consistent with reports that highly and mildly neuropathogenic
strains of Semliki Forest virus replicate to equivalent levels in en-
dothelial cells (39, 40), suggesting that the capacity to cross the
BBB is not always the determining factor for neuropathogenicity.

The initial invasion of WNV into the CNS brings the virus into
close proximity with the second component of the BBB, astro-
cytes. Indeed, infected astrocytes have been detected in some fatal
human cases of WNV encephalitis, suggesting that these cells are
also targeted by WNV in vivo (41). We observed both a delay in the
kinetics of WNV-MAD78 replication and a reduction in peak in-
fectious particle production in astrocytes compared to WNV-NY.
Since the astrocyte and primary brain endothelial cell lines used in
this study were recovered from the same donor, it is unlikely that
the constrained replication of WNV-MAD78 in HBCAs was due
to a donor-specific restriction. Further comparison of the growth
characteristics of WNV-NY and WNV-MAD78 in HBCAs indi-
cated that both strains were capable of establishing an initial in-
fection within this cell type. However, accumulation of viral pro-
tein and RNA was delayed in WNV-MAD78-infected HBCAs

FIG 5 Infectious virions released per cell and cell-to-cell spread in HBCAs.
HBCAs were infected with WNV-NY or WNV-MAD78 (MOI of 0.01). Cul-
ture medium was removed at the indicated times, and titers were determined
by plaque assay on Vero cells. The number of infected cells within the mono-
layer was determined by flow cytometry. Cells were removed from the plate by
trypsinization, fixed with 3% PFA, probed with WNV hyperimmune serum
followed by goat anti-mouse IgG 633-nm Dylight-conjugated antibody, and
subjected to flow cytometry. (A) Infectious particle production per infected
cell. The number of infectious extracellular particles per cell was determined
by dividing viral titers by the number of infected cells. Values represent the
averages from three independent experiments. A Student’s unpaired t test was
performed to determine significance. Asterisks indicate differences that are
statistically significant (*, P � 0.05) (B) WNV-positive cells per 105 cells from
three independent experiments. Values represent the averages from three in-
dependent experiments. A Student’s unpaired t test was performed to deter-
mine significance. Asterisks indicate differences that are statistically significant
compared to WNV-NY at the 12-h time point (*, P � 0.05; ***, P � 0.005).
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compared to WNV-NY. Analysis of kinetics of accumulation of
viral positive- and negative-strand RNA indicated that the delay in
WNV-MAD78 replication was at, or prior to, the initiation of
negative-strand synthesis. However, it is unlikely that a delay in
viral replication alone would result in the significant reduction in
peak viral titers observed in WNV-MAD78-infected HBCAs, sug-
gesting that an additional factor(s) is involved in restricting
WNV-MAD78 accumulation in astrocytes.

The host innate antiviral response plays a pivotal role in con-
trolling WNV replication in many cell types (14, 42–46). This
response consists of a direct IFN regulatory factor 3 (IRF-3)-de-
pendent and an indirect IFN-dependent mechanism, which func-
tion to constrain viral replication within the infected cell and pre-
vent viral spread to neighboring cells, respectively. Measureable
levels of type I IFN were detected in supernatants recovered from
both WNV-NY- and WNV-MAD78-infected HBCAs. However,
significantly higher levels of IFN were detected in WNV-NY-in-
fected HBCAs, which corresponded to the increased replication
and spread of this strain within the monolayer. Moreover, the high
levels of IFN induced by WNV-NY, specifically IFN-�, suppressed
viral spread and replication in astrocytes. In contrast, the low lev-

els of IFN induced by WNV-MAD78 late in infection did not
substantially restrict replication or spread within astrocytes.

In addition, the observation that WNV-NY- and WNV-
MAD78-infected HBCAs produced equivalent levels of infectious
particles per cell at 48 h postinfection suggests that the IRF-3-
dependent arm of the host antiviral response does not differen-
tially restrict WNV-NY and WNV-MAD78 replication within in-
fected cells. Furthermore, induction of the direct IRF-3 target
proteins ISG15 and ISG56 in HBCAs corresponded with the rate
of WNV-NY and WNV-MAD78 replication (data not shown),
indicating that WNV-MAD78 does not preferentially induce an-
tiviral programs within the infected cell. Combined, these data
suggest that the restriction to WNV-MAD78 replication and
spread in astrocytes occurs prior to the induction of the host an-
tiviral response. Therefore, the host antiviral response appears to
play a minimal role in the reduced susceptibility of astrocytes to
WNV-MAD78.

Determining both the viral and host cell factors involved in
constraining WNV-MAD78 replication in astrocytes will be nec-
essary to fully elucidate the nature of the restriction of WNV-
MAD78. One possible viral factor is the presence of specific N-

FIG 6 Role of type I IFN in limited WNV replication and spread in HBCAs. (A) Level of secreted type I IFN secretion in supernatants recovered from
WNV-infected HBCAs. Culture supernatants were removed from HBCAs infected with WNV-NY or WNV-MAD78 (MOI of 0.01) at the indicated times
postinfection. IFN levels were determined using a VSV-based bioassay. Values represent the level of type I IFN (IU/ml) (
 standard errors) from a minimum of
2 independent experiments. A Student’s unpaired t test was performed to determine significance. Asterisks indicate differences that are statistically significant
(**, P � 0.01; ***, P � 0.005). (B to D) The effect of neutralization of type I IFN on WNV spread and replication in HBCAs. HBCAs were infected with WNV-NY
or WNV-MAD78 (MOI of 0.01), and the inoculum was replaced with culture media containing control antisera or neutralizing antibodies to IFN-� and -�
combined (B and C) or individually (D). (B) Cells were fixed at 48 h postinfection with 3% PFA, permeabilized, probed with WNV hyperimmune serum followed
by goat anti-mouse IgG 633-nm Dylight-conjugated antibody, and subjected to flow cytometry. Values represent the average numbers of WNV-positive cells per
105 cells (
 standard errors) from at least two independent experiments. A Student’s unpaired t test was performed to determine significance. Asterisks indicate
differences that are statistically significant (*, P � 0.05). (C and D) Culture supernatants were recovered at 48 h postinfection, and viral titers were determined
by plaque assay on Vero cells. Values represent the average numbers of PFU per ml (
 standard errors) of supernatant from at least two separate experiments.
A Student’s unpaired t test was performed to determine significance. Asterisks indicate differences that are statistically significant (*, P � 0.05;
**, P � 0.01).
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linked glycans on the envelope protein, which correlates with the
ability to invade the CNS (12, 47, 48). WNV-MAD78 lacks this
glycosylation site; thus, our data suggest that glycosylation is not a
determining factor in the initial infection of brain endothelial cells
or subsequent replication in neurons. Consistent with this, WNV-
MAD78 replicates efficiently in neurons when introduced directly
into the brain by an intracranial route (15). Experiments are un-
der way to determine whether glycosylation contributes to WNV
replication and/or spread in astrocytes.

We hypothesize that the constrained replication of WNV-
MAD78 in astrocytes has several effects on WNV-mediated neu-
ropathology. First, the restricted replication of WNV-MAD78 in
astrocytes may minimize the initial amplification of virus and re-
duce the rate of spread within the CNS, thus allowing more time
for the host innate and adaptive immune responses to clear the
virus prior to widespread infection of highly susceptible neurons.
Second, as with other disease states, WNV infection induces as-
trocytes to release neurotoxic factors that exacerbate neuropathol-
ogy (41). Therefore, suppression of viral replication within astro-
cytes may reduce the extent of bystander cell death of uninfected
neurons. The combined effects of reduced replication in astro-
cytes and decreased production of neurotoxic molecules is consis-
tent with reports that mortality is delayed and reduced in mice
infected with WNV-MAD78 via intracranial inoculation (15).

Studies with Icam1�/�, Mmp9�/�, or Drak2�/� mice suggest
that WNV undergoes a second round of entry and dissemination
within the CNS as a result of recruitment of infected leukocytes
and/or perturbation of the BBB (49–51). There is circumstantial
evidence that astrocytes contribute to the second wave of WNV
neuroinvasion through the upregulation of MMPs, which disrupt
the BBB, and proinflammatory cytokines, which recruit infected
leukocytes (5, 41, 52, 53). Indeed, propagation within astrocytes,
neurons, and glial cells prior to the breakdown of the BBB is be-
lieved to be a common strategy of neuroinvasive viruses, including
tick-borne encephalitis virus and HIV, to enhance dissemination
within the CNS (54, 55). Therefore, the inability of WNV-MAD78
to replicate in astrocytes may limit the capacity of the virus to
undergo a second round of entry into the CNS (32, 33). Thus,
astrocytes may play a central role in both the initial dissemination
of WNV to the CNS as well as secondary waves of spread, which
are likely to exacerbate WNV-mediated neuropathology.

Overall, our data suggest that WNV-MAD78 is capable of in-
vading the CNS. However, the inability to amplify and spread
within astrocytes may block WNV-MAD78 dissemination to neu-
rons. Furthermore, our findings suggest that astrocytes play an
essential role in initiating and regulating WNV infection in the
CNS and may act as a critical determinant of differential WNV
neuropathology. Determining which astrocyte factors limit WNV
infection may ultimately promote the development of therapies
that regulate neuronal injury after the onset of WNV infection.
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